The measurement method of our vacuum gauges is based on the principle of the Bourdon spring (Eugène Bourdon, France, 1808-1884).
It is made using section tubes in special copper alloy, one end is welded to the threaded pin of the vacuum-pressure gauge, thus forming a single body with it, while the other closed end is free As the vacuum or the pressure inside increases, it tends to shift from the initial position (Bourdon effect).
The movement of the free end of the spring determines the vacuum-
pressure measurement.
In order to allow an easier reading, this movement is amplified by means
of a connection lever and transmitted to the pointer.
All is enclosed in a sturdy metal casing which contains the dial and the pointer, that can be seen through a glass.

They are available in various versions,
with coaxial or radial connectors, with built-in or external flange,
dry or glycerine filled.
Except for vacuum gauges with diameter $\emptyset 40 \mathrm{~mm}$, all the other models have a double scale dial.
All the vacuum and pressure gauges we will describe in these pages are made in compliance with all the safety standards and measurement units in force in the European Union.

Art.	Scale	Double Scale	Scale error	Operating	Notes	Weight
	Kра		allowed	temperature		g
090315	$0 \div-100$	--	2.5\%	$-10^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$	dry	52

3D drawings available at www.vuototecnica.net

VACUUM GAUGES

VACUUM GAUGE					
Art.	Scale mbar	Double Scale KPa	Scale error allowed	Operating temperature	Notes
$\mathbf{0 9 0 3 1 0}$	$0 \div-1000$	$0 \div-100$	2.5%	$-10^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$	Weight

3D drawings available at www.vuototecnica.net
VACUUM GAUGE

| Art. | Scale
 mbar | Double Scale
 Kpa | Scale error
 allowed | Operating
 temperature | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 9 0 1 \mathbf { 1 0 }}$ | $0 \div-1000$ | $0 \div-100$ | 2.5% | $-10^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$ | Weight |

VACUUM GAUGE					
Art.	Scale mbar	Double Scale KPa	Scale error allowed	Operating temperature	Notes
$\mathbf{0 9 0 1 \mathbf { 0 1 6 }}$	$0 \div-1000$	$0 \div-100$	1.6%	$-10^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$	geight

3D drawings available at www.vuototecnica.net

VACUUM GAUGES

VACUUM GAUGE						
Art.	Scale mbar	Double Scale KPa	Scale error allowed	Operating temperature	Notes	Weight
$\mathbf{0 9 0 5 1 0}$	$0 \div-1000$	$0 \div-100$	2.5%	$-10^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$	g	

This vacuum gauge has been designed to allow the immediate detection of the vacuum level inside tin cans and food containers in general.
The glycerine bath vacuum gauge art. 090516 used for this application (features described in the previous page), is provided with a hardened steel punch to easily perforate the containers and with a vacuum cup in silicon compound to guarantee vacuum seal after perforation. It is available in the standard version (which is the one shown in this page), but can be provided in other versions upon request.

Art.	Scale mbar	Double Scale KPa	Scale error allowed	Operating temperature	Notes
$\mathbf{0 9 0 5 9 9}$	$0 \div-1000$	$0 \div-100$	1.6%	$-10^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$	Weight
g					

